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Wordcount: 7157

Highlights

• Quality and sustainability on the cladding process were investigated.

• Two-Phased Optimization (TPO) methodology was proposed.

• TPO results for quality were applied for the sustainability approach.

• The final results shown that quality can still be hold in a sustainable

process.
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Normal Boundary Intersection with factor analysis
approach for multiobjective stochastic optimization of a

cladding process focusing on reduction of energy
consumption and rework

Simone C. Streitenberger*, Estevão L. Romão, Anderson P. Paiva, Pedro P.
Balestrassi, José H. G. Freitas, Vinicius C. Paes

Industrial Engineering Institute, Federal University of Itajubá, Itajubá, MG BRAZIL

Simone C. Streitenberger1,∗

Abstract

Recovering, recycling and reusing are some processes whose popularity is intense nowadays

due to the increasing concern about sustainability and environmental issues. These processes

are composed by some input variables that can be adjusted to optimize related relevant

responses. The present paper, focusing on multiobjective optimization, proposes the Two-

Phased Optimization Methodology based on the use of factor analysis, the Normal Boundary

Intersection method and stochastic programming. A real application is developed in a cladding

process of ABNT 1020 carbon steel plate using austenitic ABNT 316L stainless steel cored

wire to exemplify the approach. The first stage of the methodology focuses on optimizing the

geometric characteristics of the weld bead in order to improve the quality of the final product.

The achieved values for the input variables were wire feed rate = 8.96m/min, arc voltage =

29.38V, welding speed = 24.21cm/min, contact tip to the workpiece distance = 17.90mm.

From the comparison of the optimized geometry from Phase 1 with the real DoE experiments

geometry, the scrap and rework areas are measured through a computer graphics software.

Then, in the Phase 2, which focuses on a sustainability aspect, it is solved the multiobjective

stochastic problem aiming the minimization of the scrap and rework jointly with the energy

consumption. In this case, the optimized values for the input variables were wire feed rate =

9.95m/min, arc voltage = 28V, welding speed = 33.51cm/min, contact tip to the workpiece

distance = 25.41mm. The methodology provides consistent results when dealing with a large

number of responses considering the quality of the product and the environmental issues.

Keywords: Normal Boundary Intersection, Response Surface Methodology, Design of
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Experiments, Multiobjective Stochastic Optimization, Cladding

1. Introduction

Concerns about environmental issues have been in the spotlight, so that

the overall industry started to delve into alternative techniques aiming at envi-

ronmental sustainability. Stakeholders involved in all levels of the production

process, from the consumers to the board members, are increasingly demand-5

ing more green and aware processes (Rusinko, 2007). Exploring and following

sustainable paths can lead to improvements under both economic and environ-

mental perspectives (Zhang and Liu, 2017).

According to (Flandinet et al., 2012), the reutilization of material using re-

cycling techniques has been encouraged by a number of countries and industries10

to minimize the wastes. Remanufacturing, for example, can preserve the intrin-

sic value of deactivated products (Peng et al., 2019) and also eliminate stages,

like material processing, significantly reducing the life cycle processes (Liu et al.,

2016).

The study developed in (Liu et al., 2016) points out the laser cladding as one15

of the most effective techniques to the automobile components remanufacturing,

reasserting the emphasis given to this area. Another strategy, the stainless steel

cladding process which deposits a stainless steel layer on surfaces of carbon steel

or low-alloy steels (Gomes et al., 2013), emerges as an interesting method, since

its base can be a common material, usually cheaper than a piece made purely20

from stainless steel, that would be even for disposal. This justifies the economic

and environmental interests on the technique.

Thus, remanufacturing has becoming an important activity. Shakourloo

(2017) proposed a new model to optimize a remanufacturing process focusing

on the profit and process costs, and applied multiobjective goal programming.25

The greatest advantage of this kind of work is that it contributes to operations

sustainability which means utilizing the available resources without compromis-

ing the needs of future generations.
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Aiming to combine an optimized geometry of the weld bead with the en-

vironmental issues, the Two-Phased Optimization (TPO) methodology based30

on factor analysis and Normal Boundary Intersection (NBI) is presented. It

is exemplified through the optimization of a cladding process of ABNT 1020

carbon steel plate using austenitic ABNT 316L stainless steel cored wire, which

is considered a type of recovering approach.

The present paper is structured as follow: section 2 presents the investigated35

related work, section 3 a background and literature review about RSM, multi-

objective stochastic programming, NBI, factor analysis, and Multivariate Mean

Square Error (MMSE). Section 4 presents the aforementioned case under two

different perspectives: (i) process quality, optimizing the geometric characteris-

tics of the weld bead; (ii) sustainability, through the multiobjective stochastic40

optimization aiming the minimization of the amount of the material involved

in the rework process jointly with the cost of energy consumption. Finally in

section 5, we state the conclusions of the paper.

2. Related Work

In the present section different papers regarding RSM published in the Jour-45

nal of Cleaner Production from 2015 to 2019 are evaluated. The research was

developed in the journal own basis utilizing the term ”response surface method-

ology” as the search criterion. Only the results related to research articles were

considered, discarding others like review articles and short communications. The

selected works contains the exact term in their title. Table A.1 in Appendix A50

shows the 26 investigated articles’ authors, year of publication and titles.

The following characteristics were explored: i) the convexity of the func-

tion(s); ii) the optimization direction (maximization or minimization); iii) num-

ber of factors considered; iv) number of responses; v) number of center points;

vi) whether the authors developed a multiobjective optimization or not; vii)55

whether the authors evaluated the correlation among the considered responses

or not; viii) whether the authors considered the constraint related to the exper-

4
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imental region or not.

Among the 26 articles, we found 13 in which the objective functions are op-

timized simultaneously and 13 in which there was only one objective function or60

the authors did not treat the problem as a multiobjective optimization. Hence,

by using the Chi-Square Goodness-of-Fit test, it leads the conclusion that both

uni and multiobjective problems occur with the same frequency since a p-value

equal to 0.847 was obtained.

Another important issue investigated in the papers was the method used to65

solve the optimization problem. 18 papers used the Desirability algorithm to

find the optimal solution. This approach does not take into account the experi-

mental region constraint, what may lead to a solution outside this region, which

is not reliable. Furthermore, the correlation among the responses is neglected as

well. Only one paper explicitly mentioned about the correlation among the re-70

sponses. The remaining 8 papers did not even mention how the optimal solution

was reached.

Considering the functions developed in the papers, it was analyzed if their

convexity and the optimization direction were coincident. It did not happen in

66% of the cases. There were convex functions to be maximized and concave75

functions to be minimized, which would obligate the use of the experimental

region constraint.

3. Background and literature review

3.1. Response Surface Methodology

Response Surface Methodology (RSM) is a collection of techniques used80

to model and to analyze problems in different contexts in which a response

variable is affected by several input variables. Lu and Xu (2017) used this

methodology aiming to find the best conditions to a novel strategy to recover

non-leaching gold from wasted memory cards. Costa et al. (2016b) developed

a multivariate optimization for a dry end milling process of AISI 1045, which85

is more sustainable than conventional milling process, because it does not use

5
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cutting fluids. Klepa et al. (2019) built up a study which aimed to obtain a

raw material mixing Construction Waste (CW) with zinc oxide (ZnO) to use

as a thermoluminescent sensor, performing an experiment to obtain a product

with minimum ZnO content but maximum luminescence through the RSM.90

Nasiri and Arsalani (2018) used RSM in order to evaluate the influence of the

experimental factors such as initial dye concentration, contact time, initial pH,

and adsorbent dosage on the crystal violet removal efficiency and then to find

optimal condition for these factors that maximizes the response function.

Generally, the objective is to optimize the response, thus the first step in95

RSM is to find the mathematical model that is able to explain a relationship

between the input and the output variables. It is recommended to develop

a factorial design with central points which allows the approximation of this

relationship to a first-order model (Montgomery, 2013) as shown in Eq. (1).

y = β0 + β1x1 + β2x2 + ...+ βkxk + ε (1)

Since the main goal is to optimize the response variable, it is necessary100

to verify if there is a curvature in the experimental region, by calculating the

difference between the average of the nf factorial runs, i.e., ȳf , and the average

of the nc runs in the center points, i.e., ȳc. If this difference is small, then the

center points lie on the plane passing through the factorial points or at least

near this plane, otherwise it is likely to exist a curvature in the experimental105

region (Montgomery, 2013). The Sum of Squares for pure quadratic curvature

is shown in Eq. (2)

SSPure quadratic =
nfnc(ȳf − ȳc)2

nf + nc
(2)

This sum of squares must be incorporated in the ANOVA and a hypothesis

test for the curvature must be performed. Obtaining a p-value smaller than 0.05

indicates that there is a curvature in that region. Otherwise, the experimenter110

still needs to evaluate other ranges for the factors in order to find a region

where the curvature is present. The methods of steepest ascent and steepest

6
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descent are commonly used to encounter that region and they are detailed in

(Montgomery, 2013).

If there is curvature, a polynomial of a higher degree must be used, such115

as the second-order model shown in Eq. (3) (Montgomery, 2013). The per-

formed design must be complemented with the axial points to obtain a Central

Composite Design (CCD), that is extensively used for estimating second-order

response surface (Costa et al., 2016b).

y = β0 +

k∑

i=1

βixi +

k∑

i=1

βiix
2
i +

∑

i<j

∑

i<j

βijxixj + ε (3)

It is feasible and desirable to obtain an experimental design which insures120

a constant variance at all points at the same distance from the center. It can

be defined as a rotatable design. Furthermore, if the design matrix (N × k) is

chosen in a way that the matrix X ′X is diagonal, the design can also be defined

as an orthogonal design (Box and Hunter, 1957).

In order to understand how to define the radius of the axial points, and the125

importance of the number of center points in a CCD rotatable design, suppose

we have a CCD for k = 2, whose factorial block consists of a Full Factorial

Design (FFD) with levels = r. In a traditional FFD, r = ±1, as depicted in Fig.

1(a). Hence, it is possible to obtain the well-known mathematical expression,

shown in Eq. (4), which is used to calculate the radius of a CCD with k factors,130

maintaining the rotatability properties of the design.

ρ =
4
√

2k (4)

The ρ value is essential for the experimental region constraint establishment.

The main advantages of this constraint, applied in scientific research (Gaudêncio

et al., 2019; Pereira et al., 2017; Paiva et al., 2014; Gomes et al., 2012; Costa

et al., 2016a), relies on avoiding the extrapolation, i.e., finding optimal values135

for the input variables outside the sphere formed by the axial points observed

in Fig. 1(b).

7
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Figure 1: 2D and 3D representation for the Central Composite Design (Adapted from Mont-

gomery (2013))

In addition, to be orthogonal, the design must have the number of center

points according to Eq. (5). It is important to highlight that N = 2k +n0 + 2k,

where 2k, n0, and 2k represents the number of factorial points, center points,140

and axial points, respectively.

n0 = 4(2
k
2 ) + 4− 2k (5)

3.2. Multiobjective Stochastic Programming

According to (Dı́az-Garćıa et al., 2005), in the RSM context, we are usually

interested in the optimization of a second order model, as shown in Eq. (6).

min
x
Ŷ (x, β̂)

s.t. ||x||2 = x21 + . . .+ x2k ≤ ξ2
(6)

where ξ2 is a known constant related to the experimental space constraint.145

The polynomial to be minimized was already presented in Eq. (3). How-

8
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ever, considering the uncertainties in the calculated coefficients the deterministic

model becomes the stochastic one denoted by Eq. (7).

Ŷ (x, β̂) = β̂0 +

k∑

i=1

β̂ixi +

k∑

i=1

β̂iix
2
i +

k∑

i<j

β̂ijxixj ≡ z′(x)β̂ (7)

where z(x) is a vector that contains the polynomial terms of the k predictors

in x and β̂ is the vector of least squares regression coefficients. These coefficients150

are not deterministic, since we are considering Yi = z′(xi)β + εi, with εi ∼

N(0, σ2), ε′is independent for i = 1, . . . , n, and β̂ ∼ Np(β, σ
2(X ′X)−1), with

p = 1 + k + k(k + 1)/2 and (n − p)σ̂2/σ2 ∼ χ2
n−p, being σ̂2 the unbiased

estimator of σ2 and X is the n× p design matrix of rank p (Dı́az-Garćıa et al.,

2005).155

Hence, in a stochastic problem, the response variables, the controllable vari-

ables and even some parameters involved may have a random character (Dı́az-

Garćıa and Bshiri, 2014). Some problems with multiple responses and that

consider the presence of uncertainties can be viewed in (Yang et al., 2018) (Fu

et al., 2019) (Shabani and Sowlati, 2016) (Ren et al., 2019).160

A very useful approach related to the stochastic programming is the dual

problem in which the functions being optimized are the mean and the variance

of a response variable. Thus, considering the presence of uncertainties in the

objective function and in the constraints, it is possible to model a problem in

which the objective is to minimize the value of the mean plus the variance of165

a response variable subjected to the value of the the mean plus the standard

deviation of a second response variable as shown in Eq. (8).

min
x
F (x) = w1(xTβ) + (1− w1)[xT(Σ̃β)x]

s.t. g1(x) = xTγ + si

√
xT(Σ̃β)x− c ≤ 0

g2(x) = xTx ≤ ξ2

(8)

where w1 represents the weight associated to the first portion of the objective

function, xTβ and xT(Σ̃β)x represent the mean and the variance of the first

9
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response variable, respectively. xTγ and
√

xT(Σ̃β)x indicate the mean and the170

standard deviation of the second response variable. The value of si is the z-score

related to the probability of the constraint g1(x) to be satisfied, whereas c is a

constant defined by the researcher.

3.3. Normal Boundary Intersection

Since most of real cases involves the optimization of two or more functions175

with conflicting objectives, it requires more sophisticated strategies to obtain

satisfactory results. Das and Dennis (1998) proposed a method called Nor-

mal Boundary Intersection (NBI) which provides different equidistant optimal

solutions that together form the Pareto’s Frontier.

According to (Brito et al., 2014), for a bi-objective case, the problem can be180

expressed in terms of Eq. (9).

minf̄1(x)

s.t. : f̄1(x)− f̄2(x) + 2w − 1 = 0

gj(x) ≥ 0

0 ≤ w ≤ 1

(9)

where f̄1(x) and f̄2(x) are the objective functions normalized according to

Eq. (10).

f̄(x) =
fi(x)− fUi
fNi − fUi

(10)

The Utopia and Nadir values, fUi and fNi respectively, represent the best

and the worst values for the function being normalized. They are obtained185

from the Pay-Off matrix, which is composed of the individual optimum of each

function on the main diagonal represented by f∗i (x∗i ). These optimal values of

the vector x must be applied in the remaining objective functions fi(x
∗
i ) in order

10
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to complete a row of the Pay-Off matrix, as shown in Eq. (11).

Φ̄ =




f∗1 (x∗1) . . . f1(x∗i ) . . . f1(x∗m)
...

. . .
...

fi(x
∗
1) . . . f∗i (x∗i ) . . . fi(x

∗
m)

...
. . .

...

fm(x∗1) . . . fm(x∗i ) . . . f∗m(x∗m)




(11)

Similarly, in situations whose purpose is the optimization of three or more190

functions simultaneously, the problem can be generically modelled following the

Eq. (12).

max
(x,t)

D

s.t. : Φ̄Wi +Dn̂ = F̄(x)

x ∈ Ω

hj(x) = 0

gj(x) ≤ 0

(12)

where Φ̄ represents the normalized Pay-Off matrix, F̄(x) is the vector of

normalized objective functions, Wi is the i-th vector of weights, and n̂ is a

unitary normalized vector.195

Nevertheless, if the objective functions are correlated, it can cause model’s

instability, overfitting, and not representative regression coefficients (Wu, 2004)

(Yuan et al., 2008) (Box et al., 1973). In this condition, the NBI method will

probably produce unreal results (Costa et al., 2016b). Therefore, it is important

to apply multivariate techniques, such as factor analysis, to cope with this (Luz200

et al., 2021).

3.4. Factor Analysis

The essential purpose of factor analysis is to describe the covariance rela-

tionships among the response variables in terms of a few factors. An observ-

able random vector X with p components, mean µ, and covariance matrix Σ is205

11
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linearly dependent upon a few unobservable random variables F1, F2, . . . , Fm,

which are called common factors, and the additional sources of variation called

specific factors ε1, ε2, . . . , εp. Then, the orthogonal factor model in matrix nota-

tion is shown in Eq. (13), where L represent the matrix of factor loadings with

dimension (p×m) (Johnson and Wichern, 2007).210

X− µ = LF + ε (13)

In order to perform the factor analysis some assumptions must be considered

as shown in Eq. (14).

E(F) = 0, Cov(F) = E[FF′] = I

E(ε) = 0, Cov(ε) = E[εε′] = Ψ
(14)

Thus, it is possible to demonstrate that the covariance matrix can also be

expressed by the Eq. (15) using the orthogonal factor model (X = µ+LF + ε),

and considering the assumptions above.215

Σ = Cov(X) =E(X− µ)(X− µ)′

=LE(FF′)L′ + E(εF′)L′ + LE(Fε′) + E(εε′)

=LL′ + Ψ

(15)

Choosing m factors, m ≤ p, to represent the dataset we obtain an estimate

of the covariance matrix (S) as shown in Eq. (16).

S =L̃L̃′ + Ψ̃

S =
[ √

λ̂1ê1

√
λ̂2ê2 . . .

√
λ̂mêm

]




√
λ̂1ê
′
1√

λ̂2ê
′
2

...
√
λ̂mê′m




+




ψ̃1 0 . . . 0

0 ψ̃2 0
...

...
. . .

...

0 0 . . . ψ̃m




(16)
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In cases in which the units of the variables are not commensurate, it is

convenient to work with normalized variables. Therefore, it is possible to use

the estimated correlation matrix (R) instead of the covariance matrix Σ.220

Nevertheless, the researcher can also face some situations in which a factor

contains responses with different objectives (minimization and maximization).

In these situations, instead of optimizing the factors’ means, we opt to minimize

the value of the multivariate mean square error, explained in the next section.

3.5. Multivariate Mean Square Error225

To overcome the problem of conflicting responses objectives represented

by a same factor, Paiva et al. (2009) proposed an index called Multivariate

Mean Square Error (MMSE) able to aggregate several responses, keeping their

variance-covariance structure and the individual deviation from each target.

The authors used Principal Components Analysis (PCA) to obtain the value of230

MMSE.

This approach can also be modified by using factor analysis which is consid-

ered as an extension of PCA (Leite, 2019), since both methods approximate the

covariance model, although the approximation based on factor analysis is more

elaborated (Johnson and Wichern, 2007). Equation (17) demonstrates how to235

calculate the MMSE index.

MMSEj = (µj − Tj)2 (17)

where µj is the mean obtained from the optimization and Tj is the jth

factor’s target which can be achieved from Eq. (18).

Tj = Lj(
µi − Ti
σi

) (18)

µi, Ti, and σi represent, respectively, the individual values of mean, target,

and standard deviation of each original response variable. L, represented by the240

jth line of the matrix L̃L̃′, is the vector consisting of the loadings of the factor

whose target we aim to achieve, as shown in Eq. (16).
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4. Methodology

The methods presented in the previously section can be combined in or-

der to obtain more accurate results in an optimization problem. Considering245

a manufacturing process, the main objective is to optimize the quality charac-

teristics of the product to reach the clients’ expectations. For that, we may

start running a full factorial design with center points. Then, it is necessary to

evaluate whether there is curvature in the analyzed region. In case of a negative

response, some other experiments must be performed until an adequate region250

is found. Finally, we must add the axial points, so that it is viable to model

functions for the output variables.

Aiming to neutralize the correlation effect among the responses, it is recom-

mended to perform a factor analysis to work with non-correlated factors. It is

up to the researcher the definition of how many factors it is interesting to work255

with. These factors must be modelled as polynomial functions (normally a sec-

ond order polynomial tends to be satisfactory). Since the functions gathered in

the factors may present conflicting optimization directions (minimization and

maximization) it is convenient to consider the MMSE as the objective function

to be minimized.260

Thus, the NBI method can be applied for the first time to find the set of

optimal solutions that minimizes the MMSE. Related to each solution there is

a value of Mahalanobis’ distance indicating the dispersion of the data regarding

the optimum, and a value of entropy associated to the weights array used in the

NBI. In this case, a mixture design can be applied to determine this weights265

array W′
i = [w1, w2, . . . , wj ], where i ranges from 1 to the number of runs in

the mixture design, j is related to the numbers of defined MMSE function and

the sum of w1, w2, . . . , wj must total to 1. The number of runs may vary de-

pending on the degree of lattice and the number of components, since a simplex

lattice design is being considered. From Eq. (12), it is possible to state that i270

determines the number of NBI sub-problems and wj the importance associated

to each MMSE function.

14
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It is possible to model the ratio entropy by Mahalanobis’ distance as a func-

tion of the weights W′ = [W1|W2| . . . |Wi] used in the NBI. Considering this

evaluation criterion as the objective function, we optimize the problem, aim-275

ing to maximize it. Hence, the set of weights associated to the optimum value

is identified and applied on the NBI to find the best solution for the original

responses.

Figure 2 shows a synthesis of the first stage of TPO methodology proposed

in this paper. It is important to highlight that the actions from 1.1 up to 1.3280

were already performed in (Gomes et al., 2013).

1.1 Perform a factorial 

design of experiments 

with center points

Start

1.3 Add the axial points 

to the experiments and 

run them

1.2 Perform some 

experiments to find the 

curvature region

1.4 Perform the factor 

analysis for the 

responses

1.5 Model the 

factors

1.6 Define the objective 

functions based on 

MMSE criterion

1.7 Apply the NBI 

method

1.8 Evaluate the NBI’s 

subproblems through 

the ratio entropy/

Mahalanobis

1.9 Define the best 

combination of weights 

and the best solution for 

the original responses

End

No

Yes

Optimization phase 1. Quality 

characteristics of the weld bead

Is there a 

curvature?

Figure 2: TPO Methodology - Phase 1

Nevertheless, applying the optimized parameters obtained in the previous

step may be not sustainable regarding relevant variables, e.g., energy consump-

tion and material involved in the rework process, which can be hazardous to the

environment. Following the proposed approach in this paper, the next goal is to285

optimize these specific variables using a multiobjective stochastic programming.

The second phase of TPO is summarized in Fig. 3.

15
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It is worth mentioning that if the process manager needs to calculate eco-

nomic indicators, such as Net Present Value (NPV), the process uncertainties

will spread to the costs and reach the values of this metric, resulting in an290

stochastic NPV that must be optimized. Some simulation analysis focusing on

the risk of failure may be developed, and then we can calculate the probability

of NPV being less than 0.

2.1 Define the most 

relevant variables for the 

process sustainability

2.2 Model the 

selected variables

2.3 Determine their 

variance

2.4 Model the 

multiobjective 

stochastic problem

2.5 Apply the NBI 

method

2.6 Draw 

conclusions from 

the Pareto Frontier

Start

End

Optimization phase 2. Multiobjective 

stochastic optimization

Figure 3: TPO Methodology - Phase 2

5. Application of TPO methodology for cladding process optimiza-

tion295

5.1. Optimization of the cladding process focusing on the geometric character-

istics of the weld bead

The stainless steel cladding process has been highlighted in the industrial

environment since it allows to obtain surfaces with desirable characteristics from

low cost materials. This case explores the cladding of ABNT 1020 carbon steel300

plate using austenitic ABNT 316L stainless steel cored wire.

The equipment used for the experimentation is depicted in Fig. 4, where:

(1) welding torch, (2) specimen, (3) device for the torch conduction, (4) ESAB

AristoPower 460, (5) AristoFeed 30-4W MA6, (6) shielding gas cylinder, and (7)

shielding gas flow meter. This equipment is available at a laboratory of Federal305

University of Itajubá. The considered base metal (ABNT 1020 carbon steel)
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was cut into 120 x 60 x 6,35 mm plates, whereas the filler metal was a stainless

steel tubular wire (AWS E316LT1-1/4) with 1,2 mm diameter.

Figure 4: Equipment used for the experimentation (Adapted from Gomes (2013))

The factors that influence the process are wire feed rate (WFR), arc voltage

(AV), welding speed (WS), and contact tip to the workpiece distance (CTWD)310

as analyzed in (Gomes et al., 2013). The experimental levels for each one of

them are depicted in Table 1.

Table 1: Parameters considered in the cladding process and their respective experimental

levels

Parameters Unit
Experimental Levels

-2 -1 0 1 2

Wire Feed Rate m/min 5.5 7.0 8.5 10.0 11.5

Arc Voltage V 24.5 27.0 29.5 32.0 34.5

Welding Speed cm/min 20.0 30.0 40.0 50.0 60.0

Contact Tip to the

Workpiece Distance
mm 10.0 15.0 20.0 25.0 30.0

After defining those factors and their respective experimental levels, it was

17
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performed a factorial design with 16 cube points and 7 center points. Since the

region presented curvature it were performed 8 additional experiments repre-315

senting the axial points. Figure 5 shows the weld bead from the 19th experiment

with its respective dimensions. The 31 resulting experiments following a Central

Composite Design were performed in (Gomes et al., 2013) and can be viewed

in Table 2. The 10 original variables measured were: Heat Input (HI), Pene-

tration (P), Penetration Area (PA), Dilution (D), Width (W), Reinforcement320

(R), Convexity Index (CI), Reinforcement Area (RA), Penetration Size Factor

(PSF), and Reinforcement Form Factor (RFF).

Figure 5: 19th experiment with its respective dimensions

18
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Table 2: Experimental design and the results for 10 original vari-

ables

# WFR AV WS CTWD HI P PA D W R CI RA PSF

1 7 27 30 15 0.9288 1.3748 7.6151 0.2644 11.1868 2.6278 0.2349 21.1787 8.1370 4

2 10 27 30 15 1.1556 1.6609 9.9409 0.2582 12.9908 3.1158 0.2398 28.5077 7.8217 4

3 7 32 30 15 1.1584 1.6891 9.9385 0.3149 12.6984 2.4963 0.1966 21.7027 7.5181 5

4 10 32 30 15 1.4912 1.9768 14.4123 0.3125 15.0473 2.7782 0.1846 31.7181 7.6119 5

5 7 27 50 15 0.5605 1.6468 7.4284 0.3622 9.2145 2.1651 0.2350 13.0586 5.5953 4

6 10 27 50 15 0.6642 1.9361 9.4187 0.3369 9.9609 2.6666 0.2677 18.5681 5.1448 3

7 7 32 50 15 0.6758 1.5379 7.8384 0.3712 9.7479 2.0649 0.2118 13.2965 6.3385 4

8 10 32 50 15 0.8371 2.1808 12.9967 0.4108 11.5112 2.4249 0.2107 18.5934 5.2785 4

9 7 27 30 25 0.7722 1.2504 6.1545 0.2246 10.3249 2.8700 0.2780 21.3626 8.2571 3

10 10 27 30 25 0.9666 0.9993 6.7827 0.1832 11.4275 3.5940 0.3145 30.1513 11.4358 3

11 7 32 30 25 0.9728 1.3215 6.9475 0.2371 11.2668 2.8479 0.2528 22.3884 8.5258 3

12 10 32 30 25 1.1456 1.1005 8.7151 0.2196 13.3366 3.1793 0.2384 31.2054 12.1188 4

13 7 27 50 25 0.4633 1.1114 4.5968 0.2496 7.9917 2.5543 0.3196 13.8134 7.1905 3

14 10 27 50 25 0.5735 1.2254 5.3702 0.2331 8.6246 2.7967 0.3243 17.5415 7.0382 3

15 7 32 50 25 0.5798 1.3697 5.3312 0.2877 8.4756 2.3628 0.2788 13.2206 6.1881 3
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Table 2: Experimental design and the results for 10 original vari-

ables

# WFR AV WS CTWD HI P PA D W R CI RA PSF

16 10 32 50 25 0.7027 1.6370 8.0318 0.3019 10.8395 2.5983 0.2397 18.5772 6.6217 4

17 5.5 29.5 40 20 0.6239 1.3822 5.8740 0.3156 9.0674 2.2068 0.2434 12.7864 6.5601 4

18 11.5 29.5 40 20 0.9425 2.1393 11.5009 0.3095 12.2124 3.0557 0.2502 25.8603 5.7086 3

19 8.5 24.5 40 20 0.6431 1.2045 6.0547 0.2284 9.4242 3.0263 0.3211 20.6154 7.8240 3

20 8.5 34.5 40 20 0.9729 1.8644 10.2706 0.3558 11.6894 2.4578 0.2103 18.5753 6.2697 4

21 8.5 29.5 20 20 1.6550 0.9476 8.5576 0.1858 14.9336 3.4536 0.2313 37.6380 15.7600 4

22 8.5 29.5 60 20 0.5074 1.4328 6.6701 0.3578 8.4822 2.2498 0.2652 11.9547 5.9200 3

23 8.5 29.5 40 10 0.9868 2.1784 13.2992 0.4044 11.7331 2.6103 0.2225 19.5471 5.3860 4

24 8.5 29.5 40 30 0.6726 1.2825 5.8191 0.2416 9.2208 2.8912 0.3136 18.2157 7.1899 3

25 8.5 29.5 40 20 0.7965 1.7082 8.3989 0.3105 10.8230 2.5960 0.2399 18.6733 6.3360 4

26 8.5 29.5 40 20 0.8009 1.7229 8.7354 0.3167 10.9258 2.5923 0.2373 18.9206 6.3414 4

27 8.5 29.5 40 20 0.7921 1.6230 8.4818 0.3088 10.7436 2.6549 0.2471 18.9703 6.6196 4

28 8.5 29.5 40 20 0.7788 1.8014 8.7737 0.3283 10.6118 2.4950 0.2351 17.9509 5.8908 4

29 8.5 29.5 40 20 0.7744 1.4854 7.8761 0.2999 10.6355 2.6208 0.2464 18.4664 7.1602 4

30 8.5 29.5 40 20 0.7611 1.4897 8.2041 0.3109 10.5862 2.6119 0.2467 18.2076 7.1062 4
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Table 2: Experimental design and the results for 10 original vari-

ables

# WFR AV WS CTWD HI P PA D W R CI RA PSF

31 8.5 29.5 40 20 0.7700 1.5041 8.0139 0.3102 10.5711 2.5574 0.2419 17.8624 7.0281 4
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It is important to mention that the experiments from 1 to 16 represent the

full factorial design and it is also possible to observe, as previously mentioned

in Eq. (4), that the value of ρ =
4
√

24, is applied to generate the axial points,325

represented by the 17th to 24th experiments.

However, the axial points were added after the analysis of the center points,

represented by the experiments from 25 to 31, in order to verify the presence of

curvature. The analysis of variance for the response variable HI is shown in Ta-

ble 3, where A, B, C, and D indicate WFR, AV, WS, and CTWD, respectively.330

It is highlighted in bold the p-value related to the curvature, 0.000, which indi-

cates a high probability of existing a curvature in the analyzed region, and the

value of the Sum of squares for pure quadratic curvature, which is calculated as

previously shown in Eq. (2).

The same analysis was performed for the other variables and the related335

p-values can be observed in Table 4.

Analyzing the DOE it is possible to obtain the mathematical models for

each response, the values of R2
adj and the values of Adjusted Mean Square for

the Error source which are shown in equations from Eq. (19) to Eq. (28). In

addition, all the residuals were evaluated as normally distributed.340

HI = 0.788 + 0.086x1 + 0.089x2 − 0.243x3 − 0.080x4 + 0.070x23 − 0.027x1x3

− 0.026x2x3 + 0.029x3x4

R2
adj = 99.60%

AdjMSE = 0.0020

S = 0.0047

(19)

22
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ofTable 3: Analysis of variance for the response variable HI

Source DF Adj SS Adj MS F-Value P-Value

Model 14 1.221 0.087 396.490 0.000

Linear 4 1.149 0.287 1305.460 0.000

WFR 1 0.127 0.127 576.610 0.000

AV 1 0.137 0.137 621.140 0.000

WS 1 0.781 0.781 3547.680 0.000

CTWD 1 0.105 0.105 476.420 0.000

2-Way Interactions 6 0.043 0.007 32.62 0.000

A*B 1 0.002 0.001 6.800 0,031

A*C 1 0.011 0.011 52.230 0.000

A*D 1 0.003 0.003 14.290 0.005

B*C 1 0.011 0.011 47.930 0.000

B*D 1 0.003 0.003 14.780 0.005

C*D 1 0.013 0.013 59.710 0.000

3-Way Interactions 3 0.005 0.002 7.190 0.012

A*B*D 1 0.002 0.002 8.45 0.020

A*C*D 1 0.002 0.002 7.31 0.027

B*C*D 1 0.001 0.001 5.82 0.042

Curvature 1 0.025 0.025 111.730 0.000

Error 8 0.002 0.000

Lack-of-Fit 2 0.000 0.000 1.000 0.422

Pure Error 6 0.001 0.000

Total 22 1.223

Table 4: P-values for the curvature analysis of the indicated response variables

HI P PA D W R CI RA PSF RFF

SS 0.025 0.068 0.089 0.003 0.227 0.055 0.000 30.297 4.042 0.013

p-value 0.000 0.049 0.420 0.000 0.007 0.001 0.002 0.000 0.001 0.159
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ofP = 1.632 + 0.122x1 + 0.122x2 + 0.093x3 − 0.241x4 − 0.117x23 + 0.076x1x3

− 0.100x1x4

R2
adj = 84.08%

AdjMSE = 0.0166

S = 0.129

(20)

PA = 8.299 + 1.295x1 + 1.056x2 − 0.553x3 − 1.776x4 − 0.227x23 + 0.259x24

+ 0.524x1x2 − 0.505x1x4 − 0.291x2x4

R2
adj = 97.49%

AdjMSE = 0.1711

S = 0.414

(21)

D = 0.310− 0.003x1 + 0.025x2 + 0.037x3 − 0.043x4 − 0.007x22

− 0.012x23 + 0.008x1x2 − 0.008x3x4

R2
adj = 97.23%

AdjMSE = 0.0002

S = 0.015

(22)

W = 10.640 + 0.797x1 + 0.656x2 − 1.451x3 − 0.629x4 + 0.270x23 + 0.266x1x2

R2
adj = 99.37%

AdjMSE = 0.0626

S = 0.250

(23)
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ofR = 2.592 + 0.203x1 − 0.116x2 − 0.262x3 + 0.126x4 + 0.030x22

+ 0.057x23 + 0.032x24 − 0.047x1x2

R2
adj = 97.82%

AdjMSE = 0.0103

S = 0.102

(24)

CI = 0.243 + 0.001x1 − 0.026x2 + 0.009x3 + 0.027x4 + 0.005x22 + 0.005x24

− 0.009x1x2

R2
adj = 98.18%

AdjMSE = 0.0001

S = 0.009

(25)

RA = 19.079 + 3.375x1 − 5.538x3 + 1.570x23 − 0.941x1x3

R2
adj = 99.33%

AdjMSE = 1.0450

S = 1.023

(26)

PSF = 6.534 + 0.151x1 − 1.738x3 + 0.731x4 + 1.057x23 − 0.486x1x3 + 0.549x1x4

R2
adj = 94.22%

AdjMSE = 0.7003

S = 0.837

(27)

25



Journal Pre-proof

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
ofRFF = 4.103− 0.005x1 + 0.407x2 − 0.147x3 − 0.421x4 − 0.051x24 + 0.141x1x2

R2
adj = 98.03%

AdjMSE = 0.0232

S = 0.153

(28)

In order to evaluate if these functions are concave or convex it is necessary

to calculate the gradient and the hessian of the functions. The next step is

to calculate the eigenvalues of the hessian matrix. If they are both positive

the function is strictly convex or both negative the function is strictly concave.

There is also the possibility of eigenvalues equal to zero, in this case the set345

of eigenvalues may be non-negative or non-positive and the function will be

classified only as convex or concave, respectively. Another important point is

that the hessian matrix may present a set of eigenvalues consisting on positive

and negative values, characterizing a saddle point.

Basically, an optimum process in terms of quality is the one which covers350

the maximum surface of the base material, maximizes the reinforcement, and

produces a sufficient penetration. However, a very large reinforcement may rep-

resent rework, because after cladding we generally need to improve the surface

quality through machining. To cope with it, the multiobjective approach do

not allow the reinforcement to be maximized indiscriminately, since the other355

response variables also dispute to reach their optimum values.

In this cladding process, it is not necessary a large penetration, since the

main objective is to obtain a surface which only incorporates the characteris-

tics of the material being added. Regarding the environmental and economic

perspectives, the process can reach its optimum scenario through the minimiza-360

tion of the Heat Input (HI), that will lead to a minimum energy cost. Table

5 shows all the original variables, their respective optimization directions, their

convexity and a column indicating if the convexity and the optimization di-

rection are coincident. It is important to highlight that the Convexity Index
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(R/W), Penetration Size Factor (W/P), and Reinforcement Form Factor (W/R)365

are dimensionless, and the Dilution [PA/(PA+RA)] is a percentage value.

Table 5: Original variables and their respective optimization directions

Response

variables
Unit

Optimization

direction
Convexity Conflicting

Heat Input J/cm Minimization Saddle Yes

Penetration mm Minimization Saddle Yes

Penetration Area mm2 Minimization Saddle Yes

Dilution % Minimization Saddle Yes

Width mm Maximization Saddle Yes

Reinforcement mm Maximization Saddle Yes

Convexity index - Minimization Saddle Yes

Reinforcement Area mm2 Maximization Saddle Yes

Penetration Size

Factor
- Maximization Saddle Yes

Reinforcement Form

Factor
- Maximization Saddle Yes

As mentioned in the section 2, once all the functions present saddle points,

it is possible to understand how important is the experimental region constraint

in the optimization problem. The value of ρ will be used afterwards since X′X

must be less than
2
√

2k = ρ2 = 22. Hence, when optimizing each response, the370

constraint will be active, since the optimization direction and the convexity of

the function are conflicting. Therefore, we can infer that the individual optimum

will always be at the frontier of the spherical region.

Developing a correlation analysis for the 10 original responses as shown in

Table 6, the values in bold represent the p-value for the immediately above men-375

tioned Pearson correlation. Since the correlation between each pair of variables

is high, a factor analysis to obtain uncorrelated factors was performed, which

also provides an optimization problem with a reduced number of responses. Ini-
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tially, it was considered 10 output variables (yi) and after performing the factor

analysis we deal with only 3 factors (Fj) that represent the original responses.380

Table 6: Correlation matrix for the original responses

HI P PA D W R CI RA PSF

P 0.070

0.708

PA 0.600 0.800

0.000 0.000

D -0.243 0.818 0.523

0.188 0.000 0.003

W 0.969 0.220 0.715 -0.127

0.000 0.234 0.000 0.496

R 0.562 -0.387 0.038 -0.773 0.522

0.001 0.032 0.841 0.000 0.003

CI -0.529 -0.601 -0.738 -0.584 -0.615 0.335

0.002 0.000 0.000 0.001 0.000 0.065

RA 0.891 -0.149 0.400 -0.542 0.872 0.854 -0.167

0.000 0.425 0.026 0.002 0.000 0.000 0.369

PSF 0.635 -0.683 -0.150 -0.762 0.524 0.742 0.099 0.769

0.000 0.000 0.420 0.000 0.002 0.000 0.595 0.000

RFF 0.564 0.597 0.767 0.564 0.639 -0.316 -0.984 0.198 -0.089

0.001 0.000 0.000 0.001 0.000 0.084 0.000 0.286 0.632

The factor analysis considers that one factor may represent many distinct

variables, and the original ones are not used anymore and it is, henceforth,

considered uncorrelated scores able to explain the original variables. The den-

drogram shown in Fig. 6 indicates how the variables were clustered. It was

considered the correlation as the distance measure and the ward linkage method385

to define the clusters.

Afterwards, the 10 original variables were replaced by the 3 uncorrelated
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Figure 6: Dendrogram for the clustered variables

factors. They were extracted by correlation and using varimax rotation type,

as suggested by (Almeida et al., 2020).

It can be viewed in Table 7 the sorted rotated factor loadings and com-390

munalities, where the loading represent the correlation between the considered

variable and the factor Fj and the communalities indicate the amount of its

variability that is explained by the factors. Hence, it is possible to observe that

98% of the variance can be explained after performing the factor analysis.

Factor 1 represents the 5 variables (RA, R, HI, W, and PSF) which have the395

greatest loadings associated to this factor. Factor 2 comprises only one variable

(CI) and factor 3 represents 4 variables (P, PA, RFF and D). In some cases they

present conflicting optimization directions. Hence, in order to avoid the decision

of maximizing or minimizing the factors, we worked here with MMSE as defined

in Eq. (17), since the minimization is always adequate for this metric.400

In the optimization the NBI method was applied to find optimal equidis-

tant solutions in the Pareto surface, considering an array of 70 combinations

of weights ranging from 0.00001 to 0.99998. This mixture design was gener-

ated through a simplex lattice mixture design with three components, degree of
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Variable Factor1 Factor2 Factor3 Communality

RA 0.986 -0.122 -0.072 0.993

R 0.904 0.385 -0.154 0.989

HI 0.847 -0.507 0.001 0.974

W 0.829 -0.534 0.151 0.995

PSF 0.727 -0.056 -0.654 0.959

CI -0.073 0.941 -0.305 0.984

RFF 0.106 -0.938 0.315 0.99

P -0.126 -0.341 0.925 0.988

PA 0.395 -0.527 0.739 0.979

D -0.557 -0.461 0.651 0.947

Variance 4.2205 3.0797 2.4976 9.7978

% Var 0.422 0.308 0.25 0.98

lattice equals to 10, and augmented with the center and the axial points. The405

MMSE value for the 3 factors were considered as the responses to be minimized,

since we desire an error value as close as possible to zero. Each combination

of weights can be considered as a sub-problem of the NBI method, leading to

70 sub-problems. The 3D plot of the normalized factors and their respective

weights are depicted in Fig. 7.410

It was calculated, in each sub-problem, the value of the Mahalanobis’ dis-

tance (D) and the entropy (E), according to Eq. (29) and Eq. (30), and these

metrics were modelled and validated through ANOVA.

D =
√

(x−T)′Σ−1(x−T) (29)

E = −
n∑

j=1

wj ln(wj) (30)

where x is the vector of the original variables values and T is the vector of

targets associated to them. Regarding the entropy equation, wj represents the415
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Figure 7: 3D plot of the normalized factors versus their respective weights

j-th value of weight considered in each sub-problem of the NBI.

The model for the Mahalanobis’ distance can be viewed in Eq. (31), with

R2 and R2
adj. equal to 76.11% and 74.25%, respectively. Regarding the entropy,

Eq. (32) shows its model with R2 and R2
adj. equal to 95.82% and 95.50%,

respectively.420

D = 5.627w1 + 7.272w2 + 6.057w3 − 15.266w1w2 − 14.883w1w3 − 16.860w2w3

(31)

E = 0.001(w1 + w2 + w3) + 3.241w1w2 + 3.241w1w3 + 3.241w2w3 (32)

The contour and surface plot for both are shown in Fig. 8 and Fig. 9,

respectively. As it can be observed, the convexity and optimization directions

are coincident.

For the 70 combinations of weights it was calculated the ratio between the

entropy and the Mahalanobis’ distance. The ratio reached its maximum value425

0.8272 when w1 = 0.30, w2 = 0.30, and w3 = 0.40, representing the best point

of the Pareto’s surface previously constructed. Optimizing the MMSE functions
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Figure 8: Contour and surface plot for Mahalanobis’ distance

Figure 9: Contour and surface plot for entropy

considering this set of weights, the following values for the original 10 variables

are obtained, as shown in Table 8. Also, it is presented the individual targets

for each variable and the value obtained using the Desirability algorithm.430

Nevertheless it is important to highlight that even though the Desirability

optimal values seem to be better, they violate the experimental region, since the

algorithm does not contemplate this constraint. It indicates the coded values

2.00, 1.64, −1.23, and 2.00 for the input variables WFR, AV, WS, and CTWD,

respectively, meaning that x′x results in 12.19, which is much greater than the435

ρ2 = 4.

Figure 10 was built simultaneously considering the feasible region for all the

mathematical models generated for each original response variable and for the 3

extracted factors. It shows that the optimal solution identified by the red point

relies on the blank area that comprises the global problem’s feasible region.440

Then, it is easy to verify, by observing Table 8 and Figure 10, the complexity of
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ofTable 8: Optimized responses and individual targets for the output variables

Optimized

response

Individual

target

Desirability

optimal values

HI 1.4300 0.4371 1.3990

P 1.2901 0.8320 0.7151

PA 9.7068 4.6846 9.1794

D 0.2310 0.1664 0.2213

W 14.1002 15.5248 15.6032

R 3.1701 3.5221 3.5256

CI 0.2205 0.1797 0.2508

RA 33.1815 38.5868 37.3566

PSF 11.8559 14.5843 15.4382

RFF 4.4722 5.3035 4.3546

a multiobjective problem with many variables and the trade-off situation while

optimizing the functions.

The optimized values from TPO - Phase 1 indicate that the best weld bead

may be obtained by setting the input variables with the following uncoded445

values: WFR = 8.96m/min, AV = 29.38V, WS = 24.21cm/min and CTWD =

17.90mm.

5.2. Optimization of the cladding process focusing on the reduction of the energy

and material

5.2.1. Brazilian electrical charging system450

The energy cost in Brazil is based on a distinct electrical charging system.

It consists on two portions, here called electrical energy consumption (kW/h)

and active power demand (kW), according to the supply mode. This system

also contemplates a segment based on time-season, that assigns different fees for

the ”peak hours” (PH) and ”off-peak hours” (OPH). PH refers to the period of455

three daily consecutive hours, from 6p.m. to 9p.m., established by the energy

provider. On the other hand, OPH are the daily consecutive hours that comple-
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Figure 10: Overlaid contour plot for the original variables and the factors

ment the PH. Besides that, there are some distinct values for a period of seven

cycles of consecutive invoices, between May and November - the ”dry period” -,

and for the period of five cycles of consecutive invoices, between December and460

April of the next year - the ”wet period”.

There are three available provision categories: standard, green hour and

blue hour. The first one is the traditional binomial charging modality with a

minimum of 30kW and a maximum of 149kW contracted demand, and whose

fees for the electrical energy consumption and power demand do not depend465

on the period of usage. The green hour modality consists on differentiated fees

for the electrical energy consumption according to the period of the day and

the month (dry/wet), and a unique fee for the power demand, with a 30kW

minimal contracted demand. The last one, blue hour, contemplates different

fees for both electrical energy consumption and the power demand, according470

to the period of usage, with a 30kW minimal contracted demand, for PH or
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OPH. The consumers that may opt for one of these 3 categories must have an

installed power between 30kW and 300kW (this value may change depending

on the specific energy provider).

The Tariff Flags System is another important characteristic from the Brazil-475

ian charging system that was incorporated in 2015. It determines whether there

will be an extra energy cost to the final consumer, according to the energy

generation condition, as shown in Table 9.

Table 9: Brazilian Tariff Flag System

Flag Description

Green
Favorable energy generation conditions.

There is no modification in the energy cost.

Yellow
Less favorable energy generation conditions.

A fee of $0.0025 is added to every consumed kWh.

Red - Level 1
More costly energy generation conditions.

A fee of $0.0075 is added to every consumed kWh.

Red - Level 2
Still more costly energy generation conditions.

A fee of $0.0125 is added to every consumed kWh.

Table 10 shows the tariffs obtained from an specific energy provider to be

considered in this case, according to the blue hour category, and refers to a480

determined month (March, 2019). These values can be monthly modified due

to the energetic context of the country in terms of production and consumption.

Table 10: Flag values for dry and wet periods

Green Yellow Red - Level 1 Red - Level 2

PH - Dry 0.080705 0.083205 0.088205 0.093205

PH - Wet 0.080705 0.083205 0.088205 0.093205

OPH - Dry 0.1193825 0.1218825 0.1268825 0.1318825

OPH - Wet 0.1193825 0.1218825 0.1268825 0.1318825

Considering the information from Table 10 and the previously presented
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data, Tables 11 and 12 detail the energy cost for OPH and PH, respectively,

calculated from the heat input of every considered experiment.485

Table 11: Energy cost from the heat input for the OPH

# WFR AV WS CTWD Green Yellow
Red

L1

Red

L2

1 7 27 30 15 0.075 0.077 0.082 0.087

2 10 27 30 15 0.093 0.096 0.102 0.108

3 7 32 30 15 0.093 0.096 0.102 0.108

4 10 32 30 15 0.120 0.124 0.132 0.139

5 7 27 50 15 0.045 0.047 0.049 0.052

6 10 27 50 15 0.054 0.055 0.059 0.062

7 7 32 50 15 0.055 0.056 0.060 0.063

8 10 32 50 15 0.068 0.070 0.074 0.078

9 7 27 30 25 0.062 0.064 0.068 0.072

10 10 27 30 25 0.078 0.080 0.085 0.090

11 7 32 30 25 0.079 0.081 0.086 0.091

12 10 32 30 25 0.092 0.095 0.101 0.107

13 7 27 50 25 0.037 0.039 0.041 0.043

14 10 27 50 25 0.046 0.048 0.051 0.053

15 7 32 50 25 0.047 0.048 0.051 0.054

16 10 32 50 25 0.057 0.058 0.062 0.065

17 5.5 29.5 40 20 0.050 0.052 0.055 0.058

18 11.5 29.5 40 20 0.076 0.078 0.083 0.088

19 8.5 24.5 40 20 0.052 0.054 0.057 0.060

20 8.5 34.5 40 20 0.079 0.081 0.086 0.091

21 8.5 29.5 20 20 0.134 0.138 0.146 0.154

22 8.5 29.5 60 20 0.041 0.042 0.045 0.047

23 8.5 29.5 40 10 0.080 0.082 0.087 0.092

24 8.5 29.5 40 30 0.054 0.056 0.059 0.063
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Table 11 continued from previous page

25 8.5 29.5 40 20 0.064 0.066 0.070 0.074

26 8.5 29.5 40 20 0.065 0.067 0.071 0.075

27 8.5 29.5 40 20 0.064 0.066 0.070 0.074

28 8.5 29.5 40 20 0.063 0.065 0.069 0.073

29 8.5 29.5 40 20 0.062 0.064 0.068 0.072

30 8.5 29.5 40 20 0.061 0.063 0.067 0.071

31 8.5 29.5 40 20 0.062 0.064 0.068 0.072

Table 12: Energy cost from the heat input for the PH

# WFR AV WS CTWD Green Yellow
Red

L1

Red

L2

1 7 27 30 15 0.111 0.113 0.118 0.122

2 10 27 30 15 0.138 0.141 0.147 0.152

3 7 32 30 15 0.138 0.141 0.147 0.153

4 10 32 30 15 0.178 0.182 0.189 0.197

5 7 27 50 15 0.067 0.068 0.071 0.074

6 10 27 50 15 0.079 0.081 0.084 0.088

7 7 32 50 15 0.081 0.082 0.086 0.089

8 10 32 50 15 0.100 0.102 0.106 0.110

9 7 27 30 25 0.092 0.094 0.098 0.102

10 10 27 30 25 0.115 0.118 0.123 0.127

11 7 32 30 25 0.116 0.119 0.123 0.128

12 10 32 30 25 0.137 0.140 0.145 0.151

13 7 27 50 25 0.055 0.056 0.059 0.061

14 10 27 50 25 0.068 0.070 0.073 0.076

15 7 32 50 25 0.069 0.071 0.074 0.076

16 10 32 50 25 0.084 0.086 0.089 0.093

17 5.5 29.5 40 20 0.074 0.076 0.079 0.082
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Table 12 continued from previous page

18 11.5 29.5 40 20 0.113 0.115 0.120 0.124

19 8.5 24.5 40 20 0.077 0.078 0.082 0.085

20 8.5 34.5 40 20 0.116 0.119 0.123 0.128

21 8.5 29.5 20 20 0.198 0.202 0.210 0.218

22 8.5 29.5 60 20 0.061 0.062 0.064 0.067

23 8.5 29.5 40 10 0.118 0.120 0.125 0.130

24 8.5 29.5 40 30 0.080 0.082 0.085 0.089

25 8.5 29.5 40 20 0.095 0.097 0.101 0.105

26 8.5 29.5 40 20 0.096 0.098 0.102 0.106

27 8.5 29.5 40 20 0.095 0.097 0.101 0.104

28 8.5 29.5 40 20 0.093 0.095 0.099 0.103

29 8.5 29.5 40 20 0.092 0.094 0.098 0.102

30 8.5 29.5 40 20 0.091 0.093 0.097 0.100

31 8.5 29.5 40 20 0.092 0.094 0.098 0.102

5.2.2. Multiobjective stochastic optimization

The heat input and the reinforcement, in this paper, were chosen as the two

most relevant responses regarding an environmental approach, since they are

related to the energy consumption and the rework, respectively. Therefore, a

second approach is proposed based on a multiobjective stochastic optimization.490

The purpose is to minimize the sum of the expected value for the excess and lack

of material (stainless steel) and its associated variance, subjected to a specified

value of energy cost.

When adding more material than it is really necessary, a machining process

will be indispensable to remove the excess and to improve the characteristics of495

the surface. In cases of depositing less material than expected, another welding

process will be required to fulfill the demanded amount. For both scenarios, we

must consider the optimum bead geometry obtained from TPO - Phase 1 as the

target. In order to calculate the relevant areas, the original photos, Fig. 11 to
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Fig. 14, were converted into images through which it was possible to identify500

these values.

Figure 11: Original photo of the 4-th experimental weld bead

Figure 12: Original photo of the 10-th experimental weld bead

Figures 15 to 18 shows the images of the same weld beads presented on

Fig. 11 to Fig. 14, but converted into images where the blue and red area

represent the scrap and rework, respectively, when compared to the optimum

weld bead geometry. These figures were obtained using a computer graphics505

software (Paes, 2020) where the real photos were converted into images to make
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Figure 13: Original photo of the 19-th experimental weld bead

Figure 14: Original photo of the 21-st experimental weld bead

it possible to count the pixels to calculate the real measures. The scrap and the

rework areas were jointly considered in the problem, and they are referred to as

rework.

The other aspect in the stochastic programming refers to the cost related510

to the energy used in the welding process. It was applied a constraint which

implies that the cost value will not exceed $0.10, with a probability of 97.5%.
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Figure 15: Scrap and rework areas of the 4-th experimental weld bead

Figure 16: Scrap and rework areas of the 10-th experimental weld bead

Hence the modelling of the problem can be viewed in Eq. (33).

min
x
F (x) = w1(Z(x)′β) + (1− w1)[σ2Z(x)′(X′X)−1Z(x)]

s.t. g1(x) = Z(x)′γ + siσ
√

Z(x)′(X′X)−1Z(x) ≤ 0.1

g2(x) = x′x ≤ 4

(33)

where σ2 is the Mean Square Error (MSE) obtained through the analysis of

variance, si is equal to 1.96 which represents a probability equals to 97.5%, and,515

finally, β and γ are the vectors containing the coefficients of the model for the

rework and for the energy cost, respectively. Applying the NBI method once
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Figure 17: Scrap and rework areas of the 19-th experimental weld bead

Figure 18: Scrap and rework areas of the 21-st experimental weld bead

more, the Pareto frontier depicted in Fig. 19 is obtained.

In order to find the best point of the frontier, it was used the Mahalanobis’

distance as the evaluation criterion. Table 13 presents the values for the process520

parameters, the optimal results, the Mahalanobis’ distance, and the energy cost

for each NBI subproblem.

It is possible to observe that the point which presents the smaller value

for the Mahalanobis’ distance is the 15th. Considering this point, the values

for the input parameters in coded units are WFR = 0.967, AV = −0.600,525

WS = −0.649 e CTWD = 1.081. Therefore, their values in uncoded units

are WFR = 9.95m/min, AV = 28.00V, WS = 33.51cm/min and CTWD =
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Table 13: Optimal values for the stochastic problem

# w WFR AV WS CTWD
Rework Mahalanobi’s

distance

Energy

costMean Variance

1 0.00 8.5 29.5 40.0 20.0 11.273 0.094 2.898 0.342

2 0.05 8.6 29.5 39.0 22.3 10.322 0.094 2.037 0.340

3 0.10 8.7 29.4 37.6 22.5 9.533 0.099 1.480 0.355

4 0.15 8.9 29.4 36.4 22.7 8.829 0.108 1.141 0.371

5 0.20 9.0 29.3 35.4 22.9 8.192 0.119 1.008 0.380

6 0.25 9.1 29.3 34.4 23.0 7.648 0.133 1.039 0.380

7 0.30 9.2 29.0 34.1 23.5 7.182 0.150 1.122 0.380

8 0.35 9.4 28.8 34.0 23.8 6.772 0.169 1.163 0.380

9 0.40 9.5 28.7 33.9 24.1 6.404 0.189 1.153 0.380

10 0.45 9.6 28.5 33.8 24.4 6.071 0.211 1.098 0.380

11 0.50 9.7 28.4 33.7 24.7 5.765 0.233 1.009 0.380

12 0.55 9.7 28.3 33.6 24.9 5.482 0.257 0.901 0.380

13 0.60 9.8 28.2 33.6 25.1 5.218 0.281 0.795 0.380

14 0.65 9.9 28.1 33.5 25.2 4.970 0.306 0.721 0.380

15 0.70 10.0 28.0 33.5 25.4 4.737 0.331 0.718 0.380

16 0.75 10.0 27.9 33.5 25.6 4.515 0.356 0.809 0.380

17 0.80 10.1 27.9 33.4 25.7 4.305 0.382 0.986 0.380

18 0.85 10.1 27.8 33.4 25.8 4.105 0.409 1.223 0.380

19 0.90 10.2 27.7 33.4 26.0 3.913 0.435 1.501 0.380

20 0.95 10.2 27.7 33.4 26.1 3.728 0.462 1.809 0.380

21 1.00 10.3 27.6 33.4 26.2 3.551 0.490 2.139 0.380
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Figure 19: Pareto’s Frontier for the material involved in the rework process

25.41mm, determining the optimal setting for the sustainability approach in-

volving both energy cost and rework.

We applied the Generalized Reduced Gradient with convergency equal to530

10−6. Figure 20 was plotted from the values of the objective function for all the

iterations of the second NBI subproblem.

Some of the main results achieved in this article regarding both quality and

sustainability scenarios are summarized in Table 14.

6. Conclusion535

Several real optimization problems are classified as multiobjective and may

present a large number of responses with conflicting objectives. To deal with

this, this paper presented a Two-Phased Optimization Methodology (TPO) ap-

plying Factor Analysis, Normal Boundary Intersection (NBI), and the Multi-

variate Mean Square Error (MMSE). After modelling the responses using the540

Response Surface Methodology (RSM), the first stage consisted in minimizing

the MMSE related to the factors that represented the original objective func-

tions. In the second stage a multiobjective stochastic optimization problem was
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Figure 20: Convergency of the GRG algorithm for the second NBI subproblem

Table 14: Table of parameters and optimized responses

Quality scenario Sustainability scenario

WFR = 8.96 AV = 29.38

WS = 24.21 CTWD = 17.90

WFR = 9.95 AV = 28.00

WS = 33.51 CTWD = 25.41

HI 1.4300 0.9054

P 1.2901 1.1547

PA 9.7068 6.9210

D 0.2310 0.2160

W 14.1002 11.2695

R 3.1701 3.2635

CI 0.2205 0.2963

RA 33.1815 27.1925

PSF 11.8559 9.9239

RFF 4.4722 3.3537

modelled considering the most relevant original responses for the researcher,

aiming to approximate them even more to the target without harming the so-545
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lution obtained in TPO - Phase 1.

This methodology was applied in a multiobjective cladding process of ABNT

1020 carbon steel plate using austenitic ABNT 316L stainless steel cored wire.

The experiments were conducted by RSM and the first phase focused on the

product quality, optimizing the geometric characteristics of the weld bead. The550

second phase gave more importance to the process sustainability, solving a mul-

tiobjective stochastic problem aiming the minimization of the material involved

in the rework process jointly with the energy consumption.

Hence, it was possible to state that the methodology provides consistent

results when dealing with a large number of responses, considering both quality555

and environmental aspects.
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multi-objetivo. Ph.D. thesis. Federal University of Itajubá.
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Table A.1 continued from previous page
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products distribution and optimisation using
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Valorization of Napier grass via intermediate
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process simulation
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Table A.1 continued from previous page

(Gopal et al., 2018)

Prediction of emissions and performance of a diesel

engine fueled with n-octanol/diesel blends using

response surface methodology

(Mohammed et al., 2018)
Rubbercrete mixture optimization using response
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dyes from aqueous solutions: Response

surface methodology design
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(Simsek et al., 2018)

Analysis of the effects of dioctyl terephthalate

obtained from polyethylene terephthalate wastes

on concrete mortar: A response surface

methodology based desirability function approach

application

(Sulaiman et al., 2018)

Optimization of activated carbon preparation from

cassava stem using response surface methodology

on surface area and yield

(Tyagi et al., 2018)

Adsorptive removal of cyanide from coke oven

wastewater onto zero-valent iron: Optimization

through response surface methodology, isotherm

and kinetic studies

(Zbair et al., 2018)

Porous carbon by microwave assisted pyrolysis:

An effective and low-cost adsorbent for

sulfamethoxazole adsorption and optimization
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Table A.1 continued from previous page

(Gasemloo et al., 2019)

Response surface methodology (RSM) modeling

to improve removal of Cr (VI) ions from tannery

wastewater using sulfated carboxymethyl cellulose

nanofilter

(Khalid et al., 2019)

Analysis of the elemental composition and uptake

mechanism of Chlorella sorokiniana for nutrient

removal in agricultural wastewater under optimized

response surface methodology (RSM) conditions

(Pouladi et al., 2019)

Optimization of oxidative desulfurization of gas

condensate via response surface methodology

approach

(Uddin and Baig, 2019)

Synthesis of Co3O4 nanoparticles and their

performance towards methyl orange dye

removal: Characterisation, adsorption and

response surface methodology

(Venkatakrishnan et al., 2019)

Fixation of carbon dioxide and optimization of

liming process waste produced in tanneries using

response surface methodology
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